Optimizing Boiler Efficiency

Eric Ranger, MEM
CHC Business Development Engineer

Why Are Efficient Boilers Desirable?

- Meet code requirements
- Reduce upfront equipment cost (incentives)
- Reduce operating expenses
- Reduce replacement equipment expenses
- Reduce footprint
- Provide greater control and monitoring
- Improve emissions
- Achieve specialty certifications (USGBC)
- Marketing

Measures of Efficiency

AHRI / AFUE certified efficiencies

Efficiency chart for different firing rates

Turndown ratio

Defining Efficiency

- ENERGY STAR
 - < 300 MBH
 - ≥ 90% AFUE (gas)
- AHRI
 - AFUE
 - ASHRAE bin data
 - ≤ 300 MBH
 - BTS-2000
 - Steady state
 - Combustion / thermal efficiency

Efficiency vs. Firing Rate & RWT

Factors Not Considered

- Excess air levels
- Blower's electrical energy
- Pumping energy
- Pre / post-purge losses (cycling)
- Real-world losses
 - Fouling, blocked condensate, etc.

What Matters

- Specifier needs a tool for comparison
- Specifier needs to design a system for the boiler to perform as intended
- Contractor needs to install equipment per engineer's and manufacturer's instructions
- Owner needs to maintain equipment & system for the boiler to perform as intended

High Turndown Ratio

Advantages

- Limits thermal cycling
- Saves wear-and-tear on burner components
- Stabilizes loop temperature
- Increases efficiency for commonly oversized boiler plants
- Priced equally to standard5:1 TDR boilers
- No different maintenance requirements than standard 5:1 TDR boilers

Disadvantages

- Increases components and complexity
- More sensitive to combustion tuning
- May affect dew point temperature of products of combustion (low-fire)

The Importance of Proper Combustion

• Air = 21% $O_2 \& 79\% N_2$ (by volume)

$$CH_4 + 2 (O_2 + 3.76 N_2) \rightarrow CO_2 + 2 H_2O + 7.52 N_2$$

- 1 ft³ methane (natural gas) burns completely with 9.52 ft³ air (stoichiometric ratio)
- 2-3% excess O₂ (10-15% excess air is desirable)

Combustion Comparison

Ideal Combustion

15 CO 14 CO 13 CO 11 CO 12 CO 14 CO 15 CO 16 CO 17 CO 18 CO 18 CO 19 CO 19 CO 19 CO 10 CO

Poor Combustion

Air-Fuel Coupled

Problems with Unbalanced Excess Air

- Smoky exhaust
- Yellow flame
- Flame / ignition failures
- Sooty boiler HX surface
- More CO and/or NO_x production
- Rumbling noise
- Dilutes flue gas → lowering its heat transfer temperature
 → increases sensible flue gas loss → decreases
 combustion efficiency
- Reduction in CO₂ will affect the dew point of the water vapor in the products of combustion

Dew Point Shift

 The efficiency gains from higher turndown can be trumped by a dew point shift

Controlling Excess Air

Combustion with Fan Assist

Natural Gas

Combustion Efficiency Control

Combustion Efficiency for Natural Gas							
		Combustion Efficiency					
Excess %		Flue gas temperature less combustion air temp, °F					
Air	Oxygen	200	300	400	500	600	
9.5	2.0	85.4	83.1	80.8	78.4	76.0	
15.0	3.0	85.2	82.8	80.4	77.9	75.4	
28.1	5.0	84.7	82.1	79.5	76.7	74.0	
44.9	7.0	84.1	81.2	78.2	75.2	72.1	
81.6	10.0	82.8	79.3	75.6	71.9	68.2	

Effects of Excess Air

AGA Nomograph

Boiler Start-Up & Tuning

- Factory Authorized Company
- Accurate Flue-Gas Analyzer
- Simple Adjustment for CO₂
 Control
 - High & low-fire
- Combustion Report Printout

Test Reports

```
testo 330-2
                    01369666/USA
SITE
07/12/2011
                          09:32:18
                     Natural gas
3.0%
Fuel:
Ozref.:
CO2max:
               "F T stack
% CO2
% EFF
% ExAir
% Oxygen
201.5
9.30
87.7
     76
23
96
             PPM CO
             PPM NO
          ppm Undiluted CO
inH2O Draft
"F Ambient temp
"F Instr. temp.
"F Diff. temp.
  ---- ppm CO2amb
0.65 l/min Pump flow
Heat transf. F:
```

testo Vi.58	330-2 01369666/USA					
SITE						
07/12/2011 Fuel: 02ref.: C02max:	09:25:13 Natural gas 3.0% 11.7%					
70.9 FF PPM PPM PPM PPM PPM PPM PPM PPM PPM	NO Undiluted co Draft Ambient temp Instr. temp. Diff. temp. CO2amb Pump flow					
Heat transf. "F: "F						

Combustion Report here

What You Can Do

- Ensure your RWT is cold enough to condense
- Follow manufacturer's guidelines for checking combustion & maintenance
 - Use a good analyzer
 - Ensure tech is familiar with equipment
- Clean boiler's air filter & burner
- Change out condensate neutralizer chips
- Use chemical-free combustion air
- Follow manufacturer's venting guidelines

The System "Pressure Band"

Upper pressure limit Allowable Pressure Range Lower pressure limit

Relief valve setting

Fill pressure setting C

Excessive Makeup Water

Causes:

- Is the expansion tank undersized?
- Where is the expansion tank relative to the pump? Boiler relative to pump?
- What's the expansion tank's air charge?
- Is there a leak in the system?
- Is the fill valve isolated?
- What's the boiler's relief valve set point?

Magnetite

ECM Circulators

What You Can Do

- Follow manufacturer's guidelines for draining & flushing heat exchanger
- Maintain water chemistry
- Air / dirt separators
- Strainers or bag filters
- Magnetic separation
- Clean and / or blowdown your filtration devices!

Effects of Proper Controls

- Prope
 - Red
 - Prov
 - Max

- Most useful control settings
 - Boiler bandwidth
 - Delay timers
 - Modulation clamp
 - Staging

Outdoor Reset

Low Mass Boiler

Primary Loop

Constant Speed Primary Pump

Constant Speed Primary Pump

Variable Speed Primary Pump

Thermal Storage

Buffer Tank Sizing

V = Buffer tank volume (gal)

T = Boiler runtime (min)

Q hs = Minimum heat output rate of boiler (BTU/hr)

Q load = Minimum expected load (BTU/hr)

ΔT = Boiler temperature bandwidth (°F)

Input	Volume	Min Flow	Max Flow
1500	94 Gallons	25gpm	350gpm
2000	111 Gallons	25gpm	350gpm
2500	161 Gallons	25gpm	350gpm
3000	181 Gallons	25gpm	350gpm
3500	215 Gallons	45gpm	350gpm
4000	382 Gallons	45gpm	350gpm
5000	483 Gallons	50gpm	350gpm

$$V = T \times (Q \text{ hs } - Q \text{ load})$$
$$\Delta T \times 500$$

$$111 = \underline{T \times (80,000 - 40,000)}$$

$$(140 - 120) \times 500$$

$$T = 27.8 \text{ min.}$$

$$11 = T \times (80,000 - 40,000)$$

$$T = 2.8 \text{ min.}$$

$$111 = T \times (120,000 - 40,000)$$

$$T = 13.9 \text{ min.}$$

Buffer Tank

Blended Temperature

Motorized Isolation Valves

Header Sensor Location

Boiler Minimum Flow Bypass Location

Dual Return Ports

Indirect Water Heating

Low ΔT Syndrome

Dirty coils

Improperly sized coils

Improperly sized control valves

Control valve quality / rangeability

Two-Way Valve Control

- Variable Flow Through Coil
- Variable Flow Through System

2-Way Valve Balance

Heating Coil Characteristic Curve

2-Way Modulating Valve + Flow Limiter

2-Way Modulating Valve + Flow Limiter

2-Way Modulating Valve + Flow Limiter

PI Flow Limiter

Pressure Independent Control Valves

Pressure Tube

Efficiency's Meaningless When Boiler Doesn't Work

Protect the Investment!

Thank You!

Eric Ranger – BD Engineer 503.308.0438 eranger@chchydro.com

CHC Columbia Hydronics Co.
11100 NE 34th Circle
Vancouver, WA 98682

